Stratified sampling

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
(Statistics)
(Statistics)
Line 78: Line 78:
 
{{info
 
{{info
 
|message=Example:
 
|message=Example:
|text=Weighting of single partial results (or estimations) is important, if they stem from diffent sized sub-populations and we want to calculate a mean. A simple example: You should calculate the mean body weight of 50 students in a classroom. You have a mean value derived for the 15 ladies (55 Kg) and a mean body weight for the 35 men (73 Kg). If you would calculate an unweighted mean (64 Kg) it would be wrong. Correct is 15/50*55+35/50*73=67,6 Kg! The weights 15/50 and 35/50 are an expression of the share of these groups on the total population.
+
|text=Weighting of single partial results (or estimations) is important, if they stem from diffent sized sub-populations and we want to calculate a mean. A simple example: You should calculate the mean body weight of 50 students in a classroom. You have a mean value derived for the 15 ladies (55 Kg) and a mean body weight for the 35 men (73 Kg). If you would calculate an unweighted mean (64 Kg) it would be wrong. Correct is 15/50*55+35/50*73=67,6 Kg! The weights 15/50 and 35/50 are an expression of the share of the respective group on the total population. This weight is equal to the selection probability for simple random sampling.
 
}}
 
}}
  

Revision as of 19:16, 2 December 2008


Contents

Stratified sampling

Stratified sampling is actually not a new Sampling technique of its own, but a procedural method to subdivide a population into seperate and more homogenious sub-populations called strata (Kleinn 2007[1]). The major characteristic is that independent sampling studies are carried out in each stratum where all strata are considered as sub-populations of which the parameters need to be estimated. If random sampling is applied, we call that stratified random sampling.

Startified sampling is efficient especially in those cases where the variability inside the starta is low and the differences of means between the strata is large (Akca 2001[2]). In this case we can achive a higher precision with the same sample size.

Beside statistical issues there are further arguments for stratification. The precondition for a meaningfull partitioning of a population in non-overlapping strata is the availability of prior information that can be used as stratification criteria. In forest inventories these informations might be available in form of forest managament or GIS-data or can be derived from remote sensing data like arial fotos. Most efficiant from a statistical point of view is the stratification of a population proportinal to the target value of the Inventory. As this target value is typivcally not known before the Inventory, forest variables that are correlated to this value are used as stratification criteria. In large managed forest areas the age classe might for example be a good stratification criterion if the estimation of volume per ha is targeted.

Arguments for stratification

Sometimes it is useful to subdivide the population of interest in a number of sub-populations (strata) and carry out an independent sampling in each of these strata. There are statistical as well as practical considerations that makes this technique very favorable and interesting for large area Forest Inventories. Not without reason almost all national forest invetorys are based on stratification.

Statistical justifications
  • The spatial distribution of sample points inside the population is more evenly, if these points are selected in single strata,
  • It is possible to make an individual optimization of sampling and plot design for each stratum,
  • One usually increases the precision of the estimations for the total population,
  • Separate estimations for each of the strata are produced in a pre-planned manner,
  • It is guaranteed that there are actually sufficient observations in each one of the strata.
Practical justification
  • The possibility to optimize the Inventory design seperately for each stratum is very efficient and helps to minimize costs,
  • To facilitate inventory work (particularly field work): independent field campaigns can be carried out in each stratum,
  • It allows a better spezialization of field crews (e.g. botanists).
Construction.png sorry: 

This section is still under construction! This article was last modified on 12/2/2008. If you have comments please use the Discussion page or contribute to the article!


Stratification criteria

For the partitioning of a population we can imagine very different stratification criterias. If the reason for stratification is not an improvement of the accuracy of the estimation, the stratification variables must not necessarily be correlated to the target value. Under special conditions it might be usefull to startify even if there are no statistical justifications. For example might a political boundary dividing a forest area be a good reason for stratification, even if the forest is very homogenious, if afterwords estimations for both parts should be derived seperately. Other examples for meaningfull criteria are:

Geographical startification
  • Ecozones,
  • Forest types,
  • Site and soil types,
  • Topographical conditions,
  • Political boundaries or properties,
  • ...

Further one can imagine to use the expected inventory costs (regarding time consumption) as criterion. These costs are typically correlated to the above mentioned geographical conditions. It might be for example reasonable to stratify a forest area by slope classes, if time consumption for field work differs significantly between flat terrain and steep slopes.

Subject matter stratification
  • Species,
  • Species groups (e.g. commercial / non-commercial),
  • Tree sociological classes,
  • Age classes in plantation forests,
  • ...

Statistics

The estimators for stratified random sampling are based on simple considerations about linear combinations (Kleinn 2007[1]). When we have two independent random variables \(Y_1\,\) and \(Y_2\,\) and if we are interetsed in the sum of the two \(Y_1+Y_2\,\), then


\[E(Y_1+Y_2)=E(Y_1)+E(Y_2)\,\] and


\[var(Y_1+Y_2)=var(Y_1)+var(Y_2)\,\]


info.png Simple:
The expaction value for the sum of both is equal to the sum of both single expection values. It is intuivly clear that we can sum up the totals to derive an overall total. It is different if we consider the variables to be means!


If we consider \(Y_1\,\) and \(Y_2\,\) as estimations from the two strata 1 and 2, then we can apply the principles derived from these considerations for stratified sampling.

However, to calculate the overall mean from two estimations, we have to weight the single means in order to account for possibly different sizes of the sub-populations \(N_1\,\) and \(N_2\,\). If both strata are of the same size, we can calculate the mean by:

\[\frac 12 (Y_1+Y_2)=\frac 12 Y_1+\frac 12Y_2=c_1Y_1+c_2Y_2\,\].

The factor \(c_i\,\) can be interpreted as a weight for the single estimations from stratum 1 and 2. Because both are of equal size in this example \(c_1=c_2\) holds. A more typical case would be that we deal with strata of unequal sizes.


info.png Example:
Weighting of single partial results (or estimations) is important, if they stem from diffent sized sub-populations and we want to calculate a mean. A simple example: You should calculate the mean body weight of 50 students in a classroom. You have a mean value derived for the 15 ladies (55 Kg) and a mean body weight for the 35 men (73 Kg). If you would calculate an unweighted mean (64 Kg) it would be wrong. Correct is 15/50*55+35/50*73=67,6 Kg! The weights 15/50 and 35/50 are an expression of the share of the respective group on the total population. This weight is equal to the selection probability for simple random sampling.

Die Gewichte müssen hierbei proportional zur Größe der Teilpopulationen in den jeweiligen Straten sein. Im Rahmen von Inventuren besteht die Population in den meisten Fällen aus einer unendlichen Zahl von möglichen Stichprobenpunkten, deren Größe wir durch die Fläche der einzelnen Straten ausdrücken. Die Summe der einzelnen Gewichte muss 1 sein, es gilt also:

\[\sum c_i=1\,\]

Der Erwartungswert E für ungleich große Straten ist daher:


\[E(c_1Y_1+c_2Y_2)=E(c_1Y_1)+E(c_2Y_2)=c_1E(Y_1)+c_2E(Y_2)\,\] , wobei \(c_1 \not= c_2\,\) ist, oder


\[E(\sum c_iY_i)=\sum c_iE(Y_i)\,\].


Analog ist die Varianz:

\[var(c_1Y_1+c_2Y_2)=var(c_1Y_1)+var(c_2Y_2)=c_1^2var(Y_1)+c_2^2var(Y_2)\,\] , oder


\[var(\sum c_iY_i)=\sum c_i^2var(Y_i)\,\].


info.png Beachte:
Immer wenn eine Varianz erweitert (oder wie hier durch einen Gewichtungsfaktor relativiert) wird, muss der Faktor quadriert werden, da die Varianz eine quadratische Größe ist!


Notation

Notation Bedeutung
\(L\,\) Anzahl der Straten \(h=1, ... , L \,\)
\(N\,\) Gesamtgröße der Population
\(N_h\,\) Größe des Stratums \(h (N=sum N_h)\,\)
\(\bar y\,\) Geschätzter Mittelwert der Population
\(\bar y_h\,\) Geschätzter Mittelwert im Stratum \(h\,\)
\(n\,\) Stichprobenumfang
\(n_h\,\) Stichprobenumfang in Stratum \(h\,\)
\(S^2_h\,\) Stichprobenvarianz in Stratum \(h\,\)
\(\tau\,\) Total
\(\tau_h\,\) Total in Stratum \(h\,\)
\(\hat \tau_h\,\) Geschätztes Total in Stratum \(h\,\)
\(c_h\,\) Relativer Anteil des Stratum \(h\,\) bzw. Gewicht des Stratums
\(\hat {var} (\bar y)\,\) Geschätzte Fehlervarianz des geschätzten Populationsmittelwertes
\(\hat {var} (\hat \tau)\,\) Geschätzte Fehlervarianz des Total


Schätzer des Mittelwertes

Der Schätzer des Mittelwertes für die Stratifizierte Stichprobe ergibt sich analog zu den oben dargestellten Überlegungen (und auf Grundlage der vorgestellten Schätzer der einfachen Zufallsstichprobe) als:

\[\bar y = \sum_{h=1}^L \frac{N_h}{N} \bar y_h = \frac {1}{N} \sum_{h=1}^L N_h \bar y_h\,\]

Varianzschätzer

Der Varianzschätzer für eine Auswahl ohne Zurücklegen kann wie folgt hergeleitet werden:

\[\hat {var} (\bar y) = \sum_{h=1}^L \left\lbrace \left( \frac {N_h}{N} \right)^2 \hat {var} (\bar y_h) \right\rbrace = \frac{1}{N^2} \sum_{h=1}^L N^2_h \frac {N_h-n_h}{N_h} \frac {S^2_h}{n_h}\].


Hierbei ist \(N_h-n_h/N_h\,\) eine Endlichkeitskorrektur, die nur dann verwendet wird, wenn die Straten klein bzw. das Verhältnis zwischen Stichprobenumfang und Populationsumfang größer als 0,05 ist (Akca 2001[2]).


info.png Beachte:
Eine Endlichkeitskorrektur ist immer dann nötig, wenn Ziehen ohne Zurücklegen verwendet wird und der Populationsumfang durch die Stichprobenziehung in bemerkenswertem Umfang verringert wird. Hierdurch ändern sich die Auswahlwahrscheinlichkeiten bei jedem ziehen eines Stichprobenelementes, was durch die Endlichkeitskorrektur ausgeglichen wird.

Ohne die Endlichkeitskorrektur ergibt sich also:


\[\hat {var} (\bar y) = \frac{1}{N^2} \sum_{h=1}^L N^2_h \frac {S^2_h}{n_h}\].

Schätzer des Total

\[\hat\tau = N\bar y = \sum_{h=1}^L \frac {N_h}{N} \hat \tau_h = \sum_{h=1}^L N_h \bar y_h\,\]


Die Varianz des Total ist demnach:


\[\hat{var}(\hat {\tau}) = \hat{var}(N \bar y) = N^2 \hat{var}(\bar y)\]

Stichprobenumfang

Bei der Herleitung des nötigen Stichprobenumfangs, der immer durch den vogegebenen zulässigen Fehler, das statistische Sicherungsniveau und durch die Variabilität innerhalb der Population beeinflusst wird, muss bedacht werden, dass die Varianz in den einzelnen Straten unterschiedlich ist. Diese unterschiedlichen Varianzen müssen demnach (gewichtet) in die Berechnung des nötigen Stichprobenumfangs eingehen.


info.png Bemerkung:
Der "nötige" Stichprobenumfang ist die geschätzte Anzahl von Stichproben, die man benötigt, um ein vorgegebenen Fehler mit einem vorgegeben statistischen Sicherungsniveau einzuhalten. Das Sicherungsniveau ergibt sich aus der Irrtumswahrscheinlichkeit alpha, zu der ein t-Wert aus der Student-t Verteilung gehört. Der Vorgegebe zulässige Fehler A ist bei Waldinventuren oft mit 10% angegeben.

Vergleiche die Folgende Formel auch mit der für die einfache Zufallsstichprobe:


\[n = \frac {t^2 \sum \frac {N^2_h S^2_h}{w_h}}{N^2 A^2}\,\],


wobei \(w_h = n_h/N,\), also der Anteil des Stichprobenumfangs, der in Stratum \(h\) fällt.


info.png Bemerkung:
Für die Berechnung des Gesamtstichprobenumfangs ist es nötig, vorher zu wissen, wie groß der Anteil bzw. wie hoch die Anzahl in einzelnen Straten ist?! Das hört sich zunächst unlogisch an, da wir ja gerade die Anzahl nötiger Stichproben berechnen wollen. Bedenkt man aber, dass es hier darum geht, den erwarteten Fehler in jedem Stratum einzubeziehen, ist es logisch, dass wir eine Vorgabe für die Anzahl der Stichproben benötigen.

Hierzu muss die Zuteilung der Stichproben zu einzelnen Straten vorher definiert werden.

Verteilung der Stichproben auf Straten

Bei der Verteilung des Gesamtstichprobenumfangs auf einzelne Straten können verschiedene Kriterien herangezogen werden. Dies sind

  • Die Größe eines Stratums (je größer desto mehr Stichproben)
  • Die Variabilität innerhalb eines Stratums (je höher desto mehr Stichproben)
  • Die Kosten der Inventur, die zwischen den Straten variieren kann (Je höher desto weniger Stichproben).

Für den Fall, dass alle Straten gleich groß sind (gleiche Flächenanteile) und die Variabilität innerhalb der Straten gleich hoch ist, kann

\[n_h = \frac {n}{L}\,\],

also eine Gleichverteilung der Stichproben auf die einzelnen Straten, verwendet werden. Wie oben erwähnt würde die Stratifizierung hier jedoch keine statistischen Vorteile gegenüber einer unstratifizierten Stichprobe mit sich bringen.

Soll die Anzahl der Stichproben proportional zur Größe der Teilpopulationen (z.B. der Flächengröße) ermittelt werden, gilt:

\[n_h = n \frac {N_h}{N}\,\].

Diese Verteilung der Stichproben wird auch als Proportionale Zuteilung bezeichnet. Hierbei wird jedoch die Variabilität inerhalb der Straten nicht berüchsichtigt. Möchte man diese Größe mit berücksichtigen, sind vorab Informationen über die einzelnen Straten notwendig. Informationen über die Varianz könnten z.B. aus einer Voruntersuchung vorliegen. In diesem Fall kann die sog. Neyman - bzw. die Optimale Zuteilung verwendet werden:

\[n_h = n \frac {N_h S^2_h}{\sum_{i=1}^L N_i S^2_i}\,\].

Ergeben sich abweichende Inventurkosten (z.B. aufgrund der Geländebedingungen oder der Bestandesdichte) und ist die Kostenminimierung ein zu berücksichtigendes Ziel der Untersuchung, so können die Kosten in einzelnen Straten (\(c_h\,\) nicht mit den oben genannten Gewichtungsfaktoren zu verwechseln!) einbezogen werden. Hierdurch ergibt sich die Optimale Zuteilung mit Kostenminimierung:

\[n_h = n \frac {\frac {N_h S^2_h}{\sqrt {c_h}}}{\sum_{i=1}^L \frac{N_i S^2_i}{\sqrt {c_i}}}\,\]


info.png Bemerkung:
Hier wird deutlich, dass man \(n\) benötigt, um die Verteilung zu berechnen. Gleichzeitig braucht man \(n_h\), also das Ergebnis dieser Rechnung aber, um den Gesamtstichprobenumfang herzuleiten. Dieses Dilemma lässt sich nur durch ein iteratives Vorgehen lösen, indem zunächst relative Anteile für die Straten vorgegeben werden (z.B. anhand der Flächengröße) um im nächsten Schritt \(n\) zu berechnen.

Praktische Umsetzung

Je nachdem welches Zuteilungsverfahren verwendet werden soll, braucht man für die Stratifizierung folgende Informationen:

  • Anzahl der Straten,
  • Größe bzw. relativer Anteil der Straten an der Population,
  • Schätzungen für die Varianz in den einzelnen Straten,
  • Vorinformationen über die erwarteten Aufnahmekosten (z.B. über Zeitbedarf) in den Straten.

Weiterhin muss, wie in jeder Inventur, Die Präzision (A) für den Gesamtmittelwert vorgegeben werden. Die Irrtumswahrscheinlichkeit ist im allgemeinen mit \(\alpha = 0{,}05\,\) festgelegt.

Auf Grundlage der verfügbaren Informationen kann dann

  • ein angemessenes Zuteilungsverfahren gewählt werden,
  • die Gewichtung \(w_h\) für einzelne Straten berechnet werden,
  • der Gesamtstichprobenumfang hergeleitet werden, und
  • die Anzahl der Stichproben für jedes Stratum bestimmt werden.

Kommentare

Wie bereits erwähnt ist die Aufteilung einer Population in einzelne Straten besonders dann sinnvoll, wenn sich dadurch homogenere Teilpopulationen ergeben. D.h., wenn die Variabilität inerhalb der Straten geringer ist als in der Grundgesamtheit und die Unterschiede zwischen den Straten möglichst groß sind. Das Verhältnis zwischen diesen Varianzen ist dabei natürlich auch von der Anzahl der Straten selber abhängig. Je mehr Straten man bildet, desto geringer wird der Unterschied zwischen den Straten sein. Erfahrungswerte zeigen, dass die Bildung von mehr als 6 Straten nicht sinnvoll ist, da das Verfahren dann an Effektivität verliert.

Um eine Stratifizierung durchführen zu können, sind Vorinformationen absolut notwendig. Diese lassen sich teilweise aus Forsteinrchtungsdaten oder mit Hilfe von Fernerkundungsinformationen herleiten. Die Größe unterschiedlicher Bestandestypen kann bei einer offensichtlichen Abgrenzung beispielsweise durch eine Delinierung auf Grundlage von Luftbildern erreicht werden. Der große Vorteil dieses Verfahrens ist sicherlich, dass man einzelne Straten unabhängig behandeln kann. So können z.B. völlig unterschiedliche Inventurdesigns aber auch Plotdesigns verwendung finden. Diese können jeweils unabhängig für die speziellen Gegebenheiten optimiert werden.


info.png Beispiel:
Eine Waldfläche besteht aus abgegrenzten Altersklassen, deren Flächen zur Stratifizierung herangezogen werden. Es ist nun möglich in jungen und dichten Betsänden kleinere Probekreise zu verwenden, als in den älteren Beständen in einem anderen Stratum. Ebenso kann die Stichprobendichte an die Variabilität angepasst werden.

Wenn die Flächengröße (oder ein anderes Stratifizierungskriterium) vorher nicht bekannt ist, können die Informationen auch von einer Stichprobe geschätzt werden. Dieses Vorgehen wird dann als "Double sampling for stratification" bezeichnet.

Literatur

  1. 1.0 1.1 Kleinn, C. 2007. Lecture Notes for the Teaching Module Forest Inventory. Department of Forest Inventory and Remote Sensing. Fakulty of Forest Science and Forest Ecology, Georg-August-Universität Göttingen. 164 S.
  2. 2.0 2.1 Akca, A. 2001. Waldinventur. J.D. Sauerländer's Verlag. Frankfuhrt am Main, 193 S.


<math>\frac {\mathcal{AWF}}{\left [ \left [ Wiki \right ] \right ]}\,</math>
Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export