Co-registration with SNAP

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
(Convert data type from float32 to uint8)
(Visualize geometric offset)
 
Line 2: Line 2:
 
* Start SNAP Desktop
 
* Start SNAP Desktop
 
* {{mitem|text=File --> Open Product...}}. Browse  for Unmanned Aerial System (UAS) ortho mosaics:
 
* {{mitem|text=File --> Open Product...}}. Browse  for Unmanned Aerial System (UAS) ortho mosaics:
{{typed|text=\geodata\uas\clip_ebee_ortho_align.tif}} is a reference image which is very well georeferenced. {{typed|text=\geodata\uas\clip_mavic_ortho_align.tif}} is an image with a positional offset. It needs to be registered to the reference image. {{button|text=Open}} or drag and drop marked files from Windows File Explorer into the SNAP '''Product Explorer''' tab.
+
{{typed|text=clip_ebee_ortho_align.tif}} is a reference image which is very well georeferenced. {{typed|text=clip_mavic_ortho_align.tif}} is an image with a positional offset. It needs to be registered to the reference image. {{button|text=Open}} or drag and drop marked files from Windows File Explorer into the SNAP '''Product Explorer''' tab.
 
* Mark the reference image ''clip_ebee_ortho_align.tif'' in ToC. Right click {{mitem|text= Open RGB Image Window --> OK}}.
 
* Mark the reference image ''clip_ebee_ortho_align.tif'' in ToC. Right click {{mitem|text= Open RGB Image Window --> OK}}.
 
* Mark the image to be registered ''clip_mavic_ortho_align.tif'' in ToC. Right click {{mitem|text= Open RGB Image Window --> OK}}.
 
* Mark the image to be registered ''clip_mavic_ortho_align.tif'' in ToC. Right click {{mitem|text= Open RGB Image Window --> OK}}.
 
* {{mitem|text= Window --> Tile Vertically}}. Both side-by-side windows are spatially linked. Zoom in and use the {{button|text=Panning tool}} to see the offset between both images
 
* {{mitem|text= Window --> Tile Vertically}}. Both side-by-side windows are spatially linked. Zoom in and use the {{button|text=Panning tool}} to see the offset between both images
 +
 
=Split multiband to single band files=
 
=Split multiband to single band files=
 
* Mark the image to be registered  ''clip_mavic_ortho_align.tif'' in ToC. {{mitem|text=Raster --> Subset --> Band Subset}}. Check exclusivly '''band_1'''.
 
* Mark the image to be registered  ''clip_mavic_ortho_align.tif'' in ToC. {{mitem|text=Raster --> Subset --> Band Subset}}. Check exclusivly '''band_1'''.

Latest revision as of 22:25, 6 November 2021

Contents

[edit] Visualize geometric offset

  • Start SNAP Desktop
  • File --> Open Product.... Browse for Unmanned Aerial System (UAS) ortho mosaics:

clip_ebee_ortho_align.tif is a reference image which is very well georeferenced. clip_mavic_ortho_align.tif is an image with a positional offset. It needs to be registered to the reference image. Open or drag and drop marked files from Windows File Explorer into the SNAP Product Explorer tab.

  • Mark the reference image clip_ebee_ortho_align.tif in ToC. Right click Open RGB Image Window --> OK.
  • Mark the image to be registered clip_mavic_ortho_align.tif in ToC. Right click Open RGB Image Window --> OK.
  • Window --> Tile Vertically. Both side-by-side windows are spatially linked. Zoom in and use the Panning tool to see the offset between both images

[edit] Split multiband to single band files

  • Mark the image to be registered clip_mavic_ortho_align.tif in ToC. Raster --> Subset --> Band Subset. Check exclusivly band_1.

Snap specify band subset band 1.png

  • Repeat this step for band_2 and band_3 creating separated single bands of the image to be registered .

[edit] Co-registration of single band raster files

  • Raster --> Geometric operations --> GeFolki Co-registration.
  • Define I/O Parameters and Processing Parameters:

Snap gefolki io.png Snap gefolki params.png

  • Click Run.
  • Repeat this step for band_2 (subset_1) and band_3 (subset_2). Adjust processing parameters for each band, accordingly.

[edit] Stack single bands to multiband file

  • Create a stack of all coregistered single bands. Raster --> Geometric --> Collocation
  • Resampling Method: Bilinear Resampling

Snap collocation.png

[edit] Convert data type from float32 to uint8

  • Raster --> Data Conversion --> Convert Datatype
  • Check Save as and select GeoTIFF from drop downlist.
  • Target Data type: uint8
  • Scaling: Linear (slope and intercept)

Snap datatype io.png Snap datatype params.png

  • Mark the coregistered image collocate_cnv in ToC. Right click Open RGB Image Window --> OK. Check the geometric quality of the co-registration comparing the reference image clip_ebee_ortho_align.tif (bottom), the image with an positional offset clip_mavic_ortho_align.tif (middle) and the co-registered image collocate_cnv.tif (top).

Check collocation.png

Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export