Unsupervised classification (Tutorial)

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
(Unsupervised K-Means classification)
Line 1: Line 1:
 
==Unsupervised K-Means classification==
 
==Unsupervised K-Means classification==
 
+
* In the search engine of the Processing Toolbox, type {{typed|text=kmeans}} and double click '''KMeansClassification''' of OTB.
* Type into the search box of the Windows taskbar: {{typed|text=mapla.bat}}. Click on mapla.bat to open the Monteverdi Application Launcher.
+
* In the search engine of the Processing Toolbox, type {{typed|text=kmeans}} and double click '''KMeansClassification'''.
+
 
* Specify a multispectral image as Input Image.
 
* Specify a multispectral image as Input Image.
 
* Specify directory and name for the Output image. Select the output data type {{button|text=uint 8}} from the pull-down list.
 
* Specify directory and name for the Output image. Select the output data type {{button|text=uint 8}} from the pull-down list.

Revision as of 12:54, 17 June 2020

Unsupervised K-Means classification

  • In the search engine of the Processing Toolbox, type kmeans and double click KMeansClassification of OTB.
  • Specify a multispectral image as Input Image.
  • Specify directory and name for the Output image. Select the output data type uint 8 from the pull-down list.
  • Set the Number of classes to 20
  • Check the Training set size to 10000
  • Output pixel type: uint8
  • Click on Run.

Qgis otb kmeans.png

  • Load the resulting image into QGIS. It is single band file with 20 grey levels labeled from 0 to 19.
  • Layer Properties --> Symbology --> Render type. Switch to Singleband pseudocolor and select a Color ramp (e.g. Spectral). Select the Mode Equal interval and set the number of classes to 20
Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export