Unsupervised classification (Tutorial)

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
(Unsupervised K-Means classification)
(Unsupervised K-Means classification)
Line 7: Line 7:
 
* Set the {{button|text=Number of classes}} to {{typed|text=20}}
 
* Set the {{button|text=Number of classes}} to {{typed|text=20}}
 
* Check the {{button|text=Training set size}} to {{typed|text=10000}}
 
* Check the {{button|text=Training set size}} to {{typed|text=10000}}
 +
* Output pixel type: {{typed|text=uint8}}
 
* Click on {{button|text=Execute}}.
 
* Click on {{button|text=Execute}}.
 
[[File:qgis_otb_kmeans.png|400px]]
 
[[File:qgis_otb_kmeans.png|400px]]

Revision as of 09:45, 22 November 2019

Unsupervised K-Means classification

  • Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open the Monteverdi Application Launcher.
  • In the search engine of the Processing Toolbox, type kmeans and double click KMeansClassification.
  • Specify a multispectral image as Input Image.
  • Specify directory and name for the Output image. Select the output data type uint 8 from the pull-down list.
  • Set the Number of classes to 20
  • Check the Training set size to 10000
  • Output pixel type: uint8
  • Click on Execute.

Qgis otb kmeans.png

  • Load the resulting image into QGIS. It is single band file with 20 grey levels labeled from 0 to 19.
  • Layer Properties --> Symbology --> Render type. Switch to Singleband pseudocolor and select a Color ramp (e.g. Spectral). Select the Mode Equal interval and set the number of classes to 20
Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export