Supervised classification (Tutorial)

From AWF-Wiki
Revision as of 09:50, 28 June 2020 by Hfuchs (Talk | contribs)

Jump to: navigation, search

Contents

Per pixel classification with QGIS and OTB processing plugin

Training phase

  • In the search engine of Processing Toolbox, type TrainImages and open TrainImagesClassifer.
  • In the Input Image List select a (or optional: several) multispectral images: mosaic_S2A_MSIL2A_20200521T102031_N0214_R065_T32UNC_UNB_UPC.tif.
  • In the Input Vector Data List choose a vector polygon file with training areas: training_2020-05-21.shp.
  • In the Validation Vector Data List and choose a vector polygon file with an independent sample of validation areas: leave empty.
  • Training and validation sample ratio: Template:Text. This is a 4-fold cross-validation with split 0.75% for training and 0.25% for testing.
  • Type Code in the {button|text=Field Name}} text field.
  • Choose Support Vector Machine Classifer libsvm from the drop down list.
  • SVM Model Type is csvc
  • User defined input centroids: Type any character, no need for a filename. This field is required and but ignored (a bug in the OTB plugin!)
  • The SVM Kernel Type is Linear.
  • Switch checkbox Parameters optimization on.
  • In the Output model specify an model file: e.g. svm.model
  • Define an output file for Output confusion matrix or contingency table (e.g.svm_matrix.csv).
  • Click Run.
  • Click on the Log tab and inspect the model quality measures: Precision, Recall, F-score and Kappa index.

Qgis otb trainimages.png

Classification phase

  • In the search engine of Processing Toolbox, type ImageClassifier and double click ImageClassifier.
  • Set Subset_S2A_MSIL2A_20170619T_MUL.tif as Input image.
  • Set Input _mask to blank (top of drop-down list).
  • Set lucc_svm.model as Model file.
  • Set Output pixel type to uint16
  • Save the Output image as svm_classification.tif.
  • Uncheck Confidence map: Open output file after running algorithm.
  • Add svm_classification.tif to QGIS canvas.
  • Download the style file classifcation.qml from Stud.IP.
  • Right click svm_classification.tif in the TOC and select Properties --> Style --> Style --> Load Style.
  • Select the style file \lucc\classification.qml. OK.
  • Open the text file lucc_svm_confusion.csv with LibrOffice Calc or MS Excel and calculate overall, user, producer accuracy and kappa index.

Qgis otb imageclassifier.png

Postprocessing

This application uses a majority filter with a circular structure element.

  • In the search engine of Processing Toolbox, type classification and double click ImageClassifier.
  • Define Input classification image as ans classification output raster.
  • Set Structuring element radius to 2 pixels.
  • Set Output pixel type to uint16.
  • Save the Output regularizd image as svm_classification_majority.tif.
  • Click Run.

Qgis otb majority.png

Per pixel classification with OTB standalone

Training phase

  • Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open Monteverdi Application Launcher.
  • In the search engine of mapla, type TrainImages and double click TrainImagesClassifer.
  • In the Input Image List click on + and select a (or optional: several) multispectral images: Subset_S2A_MSIL2A_20170619T_MUL.tif .
  • In the Input Vector Data List choose a vector polygon file with training areas: lucc_training_input.shp.
  • Activate the checkbox Validation Vector Data List and choose a vector polygon file with an independent sample of validation areas: lucc_validation.shp
  • In the Output model specify an output model file: e.g. lucc_svm.model
  • Activate the checkbox and save the Output confusion matrix or contingency table as lucc_svm_confusion.csv.
  • In the Bound sample number by minimum field type 1.
  • Set the training and validation sample ratio to 0. (0 = all training data).
  • Mark C_ID in the Field containing the class integer label (C_ID refers to the column that contains the LUC code in the training and validation vector file).
  • Choose LibSVM classifier from the drop down list as Classifier to use for the training.
  • The SVM Kernel Type is Linear.
  • The SVM Model Type is C support vector classification.
  • Switch the Parameters optimization to on.
  • Check user defined seed and enter an integer value.
  • Click on Execute.
  • Click on the Log tab and inspect the quality measures: Precision, Recall, F-score and Kappa index.

Otb trainimages.png

Classification phase

  • In the search engine of mapla, type ImageClassifier and double click ClassifcationMapRegularization
  • Set Subset_S2A_MSIL2A_20170619T_MUL.tif as Input image.
  • Set SVM.model as Model file.
  • Save the Output image as svm_classification.tif.

Otb imageclassifier.png

  • Evaluate classification results:
  • Add svm_classification.tif to QGIS canvas.
  • Download the style file classifcation.qml from Stud.IP.
  • Right click svm_classification.tif in the TOC and select Properties --> Style --> Style --> Load Style.
  • Select the style file \lucc\classification.qml. OK.
  • Open the text file lucc_svm_confusion.csv with LibreOffice Calc or MS Excel and calculate overall, user, producer accuracy and kappa index.

Postprocessing

This application uses a majority with a circular structure element.

  • In the search engine of mapla, type, regular and double click ClassifcationMapRegularization.
  • Define Input classification image as ans classification output raster.
  • Save the Output regularizd image as svm_classification_majority.tif.
  • Set Structuring element radius to 3 pixels.
  • Set Output pixel type to uint8.
  • Click Execute.

Otb majority.png

Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export