Supervised classification (Tutorial)
From AWF-Wiki
(Difference between revisions)
(→Training of per-pixel classifiers) |
(→Classification with Orfeo Toolbox) |
||
Line 19: | Line 19: | ||
== Classification== | == Classification== | ||
− | + | * In the search engine of mapla, type {{typed|text=ImageClassifier}} and double click '''ImageClassifier''' | |
− | + | * Set ''Subset_S2A_MSIL2A_20170619T_MUL.tif'' as {{button|text=Input image}}. | |
− | + | * Set '''SVM.model''' as {{button|text=Model file}}. | |
− | + | * Save the {{button|text=Output image}} as '''svm_classification.tif'''. | |
− | + | ||
− | + | * Evaluate classification results: | |
− | + | ** Add the result ''svm_classification.tif'' to a QGIS project. | |
− | + | ** Download the style file '''classifcation.qml''' from Stud.IP. | |
− | + | ** Right click ''svm_classifcation.tif'' in the [[TOC]] and select {{mitem|text=Properties --> Style --> Style --> Load Style}}. | |
+ | ** Select the style file '''classifcation.qml'''. {{button|text=OK}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 18:29, 8 December 2018
Classification with Orfeo Toolbox
Training per-pixel classifiers
- Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open Monteverdi Application Launcher.
- In the search engine of mapla, type TrainImages and double click TrainImagesClassifer.
- In the Input Image List click on + and select a (or optional: several) multispectral images: Subset_S2A_MSIL2A_20170619T_MUL.tif .
- In the Input Vector Data List choose a vector polygon file with training areas: lab07_training_input.shp.
- Activate the checkbox Validation Vector Data List and choose a vector polygon file with an independent sample of validation areas: lab07_validation_input.shp
- In the Output model specify an output model file: e.g. svm.model
- Activate the checkbox and save the Output confusion matrix or contingency table as ConfusionMatrixSVM.csv.
- In the Bound sample number by minimum field type 0.
- Set the training and validation sample ratio to 0. (0 = all training data).
- Set Field containing the class integer label to C_ID (C_ID refers to the column that contains the LUC code in the training and validation vector file).
- Choose LibSVM classifier from the drop down list as Classifier to use for the training.
- The SVN Kernel Type is Gaussian radial basis function.
- Switch the Parameters optimization to on.
- Set user defined seed with an integer value.
- Click on Execute.
Classification
- In the search engine of mapla, type ImageClassifier and double click ImageClassifier
- Set Subset_S2A_MSIL2A_20170619T_MUL.tif as Input image.
- Set SVM.model as Model file.
- Save the Output image as svm_classification.tif.
- Evaluate classification results:
- Add the result svm_classification.tif to a QGIS project.
- Download the style file classifcation.qml from Stud.IP.
- Right click svm_classifcation.tif in the TOC and select Properties --> Style --> Style --> Load Style.
- Select the style file classifcation.qml. OK