Supervised classification (Tutorial)

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
Line 31: Line 31:
  
 
==Postprocessing==
 
==Postprocessing==
This application use a majority with a circular structure element.
+
This application uses a majority with a circular structure element.
 
* In the search engine of Processing Toolbox, type {{typed|text=classification}} and double click '''ImageClassifier'''.
 
* In the search engine of Processing Toolbox, type {{typed|text=classification}} and double click '''ImageClassifier'''.
 +
* Define {{button|text=Input classification image}} as ans classification output raster.
 +
* Set {{button|text=Structuring element radius}} to {{typed|text=3}} pixels.
 +
* Set {{button|text=Output pixel type}} to {{button|text=uint8}}.
 +
* Save the {{button|text=Output regularizd image}} as '''svm_classification_majority.tif'''.
 +
* Click {{button|text=Run}}.
 +
[[File:qgis_otb_majority.png|400px]]
  
 
=Per pixel classification with OTB standalone=
 
=Per pixel classification with OTB standalone=
Line 56: Line 62:
  
 
==Classification phase==
 
==Classification phase==
* In the search engine of mapla, type {{typed|text=ImageClassifier}} and double click '''ImageClassifier'''
+
* In the search engine of mapla, type {{typed|text=ImageClassifier}} and double click '''ClassifcationMapRegularization'''
 
* Set ''Subset_S2A_MSIL2A_20170619T_MUL.tif'' as {{button|text=Input image}}.
 
* Set ''Subset_S2A_MSIL2A_20170619T_MUL.tif'' as {{button|text=Input image}}.
 
* Set '''SVM.model''' as {{button|text=Model file}}.
 
* Set '''SVM.model''' as {{button|text=Model file}}.
Line 66: Line 72:
 
* Right click ''svm_classification.tif'' in the [[TOC]] and select {{mitem|text=Properties --> Style --> Style --> Load Style}}.
 
* Right click ''svm_classification.tif'' in the [[TOC]] and select {{mitem|text=Properties --> Style --> Style --> Load Style}}.
 
* Select the style file '''\lucc\classification.qml'''. {{button|text=OK}}.
 
* Select the style file '''\lucc\classification.qml'''. {{button|text=OK}}.
* Open the text file '''lucc_svm_confusion.csv''' with LibrOffice Calc or MS Excel and calculate overall, user, producer accuracy and kappa index.  
+
* Open the text file '''lucc_svm_confusion.csv''' with LibreOffice Calc or MS Excel and calculate overall, user, producer accuracy and kappa index.  
 +
 
 +
==Postprocessing==
 +
This application uses a majority with a circular structure element.
 +
* In the search engine of mapla, type, {{typed|text=regular}} and double click '''ClassifcationMapRegularization'''.
 +
* Define {{button|text=Input classification image}} as ans classification output raster.
 +
* Save the {{button|text=Output regularizd image}} as '''svm_classification_majority.tif'''.
 +
* Set {{button|text=Structuring element radius}} to {{typed|text=3}} pixels.
 +
* Set {{button|text=Output pixel type}} to {{button|text=uint8}}.
 +
* Click {{button|text=Execute}}.
 +
[[File:qgis_otb_majority.png|400px]]
  
 
[[Category:QGIS Tutorial]]
 
[[Category:QGIS Tutorial]]

Revision as of 14:32, 4 July 2019

Contents

Per pixel classification with QGIS and OTB processing plugin

Training phase

  • In the search engine of Processing Toolbox, type TrainImages and open TrainImagesClassifer.
  • In the Input Image List select a (or optional: several) multispectral images: Subset_S2A_MSIL2A_20170619T_MUL.tif .
  • In the Validation Vector Data List and choose a vector polygon file with an independent sample of validation areas: lucc_validation.shp.
  • Type C_ID in the {button|text=Field Name}} text field.
  • Choose Support Vector Machine Classifer libsvm from the drop down list.
  • SVM Model Type is csvc
  • The SVM Kernel Type is Linear.
  • Switch checkbox Parameters optimization on.
  • In the Output model specify an model file: e.g. lucc_svm.model
  • Define an output file for Output confusion matrix or contingency table (e.g.lucc_svm_confusion.csv).
  • Click Run.
  • Click on the Log tab and inspect the quality measures: Precision, Recall, F-score and Kappa index.

Qgis otb trainimages.png

Classification phase

  • In the search engine of Processing Toolbox, type ImageClassifier and double click ImageClassifier.
  • Set Subset_S2A_MSIL2A_20170619T_MUL.tif as Input image.
  • Set Input _mask to blank (top of drop-down list).
  • Set lucc_svm.model as Model file.
  • Set Output pixel type to uint8
  • Save the Output image as svm_classification.tif.
  • Uncheck Confidence map: Open output file after running algorithm.
  • Add svm_classification.tif to QGIS canvas.
  • Download the style file classifcation.qml from Stud.IP.
  • Right click svm_classification.tif in the TOC and select Properties --> Style --> Style --> Load Style.
  • Select the style file \lucc\classification.qml. OK.
  • Open the text file lucc_svm_confusion.csv with LibrOffice Calc or MS Excel and calculate overall, user, producer accuracy and kappa index.

Qgis otb imageclassifier.png

Postprocessing

This application uses a majority with a circular structure element.

  • In the search engine of Processing Toolbox, type classification and double click ImageClassifier.
  • Define Input classification image as ans classification output raster.
  • Set Structuring element radius to 3 pixels.
  • Set Output pixel type to uint8.
  • Save the Output regularizd image as svm_classification_majority.tif.
  • Click Run.

Qgis otb majority.png

Per pixel classification with OTB standalone

Training phase

  • Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open Monteverdi Application Launcher.
  • In the search engine of mapla, type TrainImages and double click TrainImagesClassifer.
  • In the Input Image List click on + and select a (or optional: several) multispectral images: Subset_S2A_MSIL2A_20170619T_MUL.tif .
  • In the Input Vector Data List choose a vector polygon file with training areas: lucc_training_input.shp.
  • Activate the checkbox Validation Vector Data List and choose a vector polygon file with an independent sample of validation areas: lucc_validation.shp
  • In the Output model specify an output model file: e.g. lucc_svm.model
  • Activate the checkbox and save the Output confusion matrix or contingency table as lucc_svm_confusion.csv.
  • In the Bound sample number by minimum field type 1.
  • Set the training and validation sample ratio to 0. (0 = all training data).
  • Mark C_ID in the Field containing the class integer label (C_ID refers to the column that contains the LUC code in the training and validation vector file).
  • Choose LibSVM classifier from the drop down list as Classifier to use for the training.
  • The SVM Kernel Type is Linear.
  • The SVM Model Type is C support vector classification.
  • Switch the Parameters optimization to on.
  • Check user defined seed and enter an integer value.
  • Click on Execute.
  • Click on the Log tab and inspect the quality measures: Precision, Recall, F-score and Kappa index.

Otb trainimages.png

Classification phase

  • In the search engine of mapla, type ImageClassifier and double click ClassifcationMapRegularization
  • Set Subset_S2A_MSIL2A_20170619T_MUL.tif as Input image.
  • Set SVM.model as Model file.
  • Save the Output image as svm_classification.tif.

Otb imageclassifier.png

  • Evaluate classification results:
  • Add svm_classification.tif to QGIS canvas.
  • Download the style file classifcation.qml from Stud.IP.
  • Right click svm_classification.tif in the TOC and select Properties --> Style --> Style --> Load Style.
  • Select the style file \lucc\classification.qml. OK.
  • Open the text file lucc_svm_confusion.csv with LibreOffice Calc or MS Excel and calculate overall, user, producer accuracy and kappa index.

Postprocessing

This application uses a majority with a circular structure element.

  • In the search engine of mapla, type, regular and double click ClassifcationMapRegularization.
  • Define Input classification image as ans classification output raster.
  • Save the Output regularizd image as svm_classification_majority.tif.
  • Set Structuring element radius to 3 pixels.
  • Set Output pixel type to uint8.
  • Click Execute.

Qgis otb majority.png

Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export