Supervised classification (Tutorial)
From AWF-Wiki
(Difference between revisions)
(→Training of per-pixel classifiers) |
(→Training of per-pixel classifiers) |
||
Line 1: | Line 1: | ||
= Classification with Orfeo Toolbox = | = Classification with Orfeo Toolbox = | ||
− | == Training | + | == Training per-pixel classifiers == |
* Type into the search box of the Windows taskbar: {{typed|text=mapla.bat}}. Click on mapla.bat to open Monteverdi Application Launcher. | * Type into the search box of the Windows taskbar: {{typed|text=mapla.bat}}. Click on mapla.bat to open Monteverdi Application Launcher. | ||
* In the search engine of mapla, type {{typed|text=TrainImages}} and double click '''TrainImagesClassifer'''. | * In the search engine of mapla, type {{typed|text=TrainImages}} and double click '''TrainImagesClassifer'''. |
Revision as of 18:19, 8 December 2018
Contents |
Classification with Orfeo Toolbox
Training per-pixel classifiers
- Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open Monteverdi Application Launcher.
- In the search engine of mapla, type TrainImages and double click TrainImagesClassifer.
- In the Input Image List click on + and select a (or optional: several) multispectral images: Subset_S2A_MSIL2A_20170619T_MUL.tif .
- In the Input Vector Data List choose a vector polygon file with training areas: lab07_training_input.shp.
- Activate the checkbox Validation Vector Data List and choose a vector polygon file with an independent sample of validation areas: lab07_validation_input.shp
- In the Output model specify an output model file: e.g. svm.model
- Activate the checkbox and save the Output confusion matrix or contingency table as ConfusionMatrixSVM.csv.
- In the Bound sample number by minimum field type 0.
- Set the training and validation sample ratio to 0. (0 = all training data).
- Set Field containing the class integer label to C_ID (C_ID refers to the column that contains the LUC code in the training and validation vector file).
- Choose LibSVM classifier from the drop down list as Classifier to use for the training.
- The SVN Kernel Type is Gaussian radial basis function.
- Switch the Parameters optimization to on.
- Set user defined seed with an integer value.
- Click on Execute.
Classification
- Open Orfeo Toolbox --> Image Classification (see figure C).
- Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif as Input image.
- Set SVM.model as Model file.
- Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.xml as Statistical file.
- Save the Output image as su_svm.tif.
- Evaluate classification results.
- Add the classification result su_svm.tif to QGIS.
- Right click su_svm.tif in the TOC and select Properties --> Style --> Style --> Load Style.
- Load lab05_MinDist.qml.
Compute a confusion matrix with independent reference data
- Open Orfeo Toolbox --> ComputeConfusionMatrix (Vector).
- Set su_svm.tif as Input image.
- Set lab05_validation.shp as Input reference vector data.
- Set Field name to C_ID.