Supervised classification (Tutorial)

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
(Train image classifier)
(Train image classifier)
Line 12: Line 12:
 
* Specify a multispectral image as Input Image: the Sentinel-2 image ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif ''
 
* Specify a multispectral image as Input Image: the Sentinel-2 image ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif ''
 
* Specify directory and name for the XML Output image. Specify the extension '''.xml''' for this file.
 
* Specify directory and name for the XML Output image. Specify the extension '''.xml''' for this file.
 +
* (see figure '''B''').
 +
* Set ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif'' as {{button|text=Input image list}}.
 +
* Set ''lab07_training_input.shp'' as {{button|text=Input vector list}}.
 +
* Set ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif.xml'' as {{button|text=Input XML image statistics file}}.
 +
* Set {{button|text=Name of discrimination field}} to ''C_ID'' (C_ID refers to the column that contains the LUC code).
 +
* Save the {{button|text=Output confusion matrix}} as ''ConfusionMatrixSVM.csv''.
 +
* Save the {{button|text=Output model}} as ''SVM.model''.
 
* Click on {{button|text=Execute}}.
 
* Click on {{button|text=Execute}}.
# Add the training areas as vector polygon file ''lab05_training_input.shp'' into QGIS.
+
* Calculation of accuracies :<br/> Open ''ConfusionMatrixSVM.csv'' in LibreOffice or MS Excel and calculate overall, producer and consumer accuracies.
# Open {{mitem|text=Orfeo Toolbox --> TrainImageClassifier (libsvm)}} to use the Support Vector Machine SVM algorithm (see figure '''B''').
+
# Set ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif'' as {{button|text=Input image list}}.
+
# Set ''lab05_training_input.shp'' as {{button|text=Input vector list}}.
+
# Set ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif.xml'' as {{button|text=Input XML image statistics file}}.
+
# Set {{button|text=Name of discrimination field}} to ''C_ID'' (C_ID refers to the column that contains the LUC code).
+
# Save the {{button|text=Output confusion matrix}} as ''ConfusionMatrixSVM.csv''.
+
# Save the {{button|text=Output model}} as ''SVM.model''.
+
# Calculation of accuracies :<br/> Open ''ConfusionMatrixSVM.csv'' in LibreOffice or MS Excel and calculate overall, producer and consumer accuracies.
+
  
 
== Classification==
 
== Classification==

Revision as of 16:46, 2 December 2018

Contents

Classification with Orfeo Toolbox

Image statistics

  • Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open Monteverdi Application Launcher.
  • In the search engine of mapla, type ComputeImagesStatistics and double click ComputeImagesStatistics.
  • Specify a multispectral image as Input Image: the Sentinel-2 image Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif
  • Specify directory and name for the XML Output image. Specify the extension .xml for this file.
  • Click on Execute.

Qgis ComputeImagesStatistics.png

Train image classifier

  • In the search engine of mapla, type TrainImages and double click TrainImagesClassifer.
  • Specify a multispectral image as Input Image: the Sentinel-2 image Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif
  • Specify directory and name for the XML Output image. Specify the extension .xml for this file.
  • (see figure B).
  • Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif as Input image list.
  • Set lab07_training_input.shp as Input vector list.
  • Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif.xml as Input XML image statistics file.
  • Set Name of discrimination field to C_ID (C_ID refers to the column that contains the LUC code).
  • Save the Output confusion matrix as ConfusionMatrixSVM.csv.
  • Save the Output model as SVM.model.
  • Click on Execute.
  • Calculation of accuracies :
    Open ConfusionMatrixSVM.csv in LibreOffice or MS Excel and calculate overall, producer and consumer accuracies.

Classification

  1. Open Orfeo Toolbox --> Image Classification (see figure C).
  2. Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif as Input image.
  3. Set SVM.model as Model file.
  4. Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.xml as Statistical file.
  5. Save the Output image as su_svm.tif.
  6. Evaluate classification results.
    1. Add the classification result su_svm.tif to QGIS.
    2. Right click su_svm.tif in the TOC and select Properties --> Style --> Style --> Load Style.
    3. Load lab05_MinDist.qml.

Compute a confusion matrix with independent reference data

  1. Open Orfeo Toolbox --> ComputeConfusionMatrix (Vector).
  2. Set su_svm.tif as Input image.
  3. Set lab05_validation.shp as Input reference vector data.
  4. Set Field name to C_ID.
Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export