Supervised classification (Tutorial)

From AWF-Wiki
(Difference between revisions)
Jump to: navigation, search
(Image statistics)
(Image statistics)
Line 2: Line 2:
 
== Image statistics ==
 
== Image statistics ==
 
* Type into the search box of the Windows taskbar: {{typed|text=mapla.bat}}. Click on mapla.bat to open  Monteverdi Application Launcher.
 
* Type into the search box of the Windows taskbar: {{typed|text=mapla.bat}}. Click on mapla.bat to open  Monteverdi Application Launcher.
* In the search engine of the Processing Toolbox, type {{typed|text=ComputeImagesStatistics}} and double click '''ComputeImagesStatistics'''.
+
* In the search engine of mapla, type {{typed|text=ComputeImagesStatistics}} and double click '''ComputeImagesStatistics'''.
 
* Specify a multispectral image as Input Image: the Sentinel-2 image ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif ''
 
* Specify a multispectral image as Input Image: the Sentinel-2 image ''Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif ''
 
* Specify directory and name for the XML Output image. Specify the extension '''.xml''' for this file.
 
* Specify directory and name for the XML Output image. Specify the extension '''.xml''' for this file.

Revision as of 13:58, 2 December 2018

Contents

Classification with Orfeo Toolbox

Image statistics

  • Type into the search box of the Windows taskbar: mapla.bat. Click on mapla.bat to open Monteverdi Application Launcher.
  • In the search engine of mapla, type ComputeImagesStatistics and double click ComputeImagesStatistics.
  • Specify a multispectral image as Input Image: the Sentinel-2 image Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif
  • Specify directory and name for the XML Output image. Specify the extension .xml for this file.
  • Click on Execute.

Qgis ComputeImagesStatistics.png

Train image classifier

  1. Add the training areas as vector polygon file lab05_training_input.shp into QGIS.
  2. Open Orfeo Toolbox --> TrainImageClassifier (libsvm) to use the Support Vector Machine SVM algorithm (see figure B).
  3. Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif as Input image list.
  4. Set lab05_training_input.shp as Input vector list.
  5. Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif.xml as Input XML image statistics file.
  6. Set Name of discrimination field to C_ID (C_ID refers to the column that contains the LUC code).
  7. Save the Output confusion matrix as ConfusionMatrixSVM.csv.
  8. Save the Output model as SVM.model.
  9. Calculation of accuracies :
    Open ConfusionMatrixSVM.csv in LibreOffice or MS Excel and calculate overall, producer and consumer accuracies.

Classification

  1. Open Orfeo Toolbox --> Image Classification (see figure C).
  2. Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.tif as Input image.
  3. Set SVM.model as Model file.
  4. Set Subset_S2A_MSIL2A_20170619T_MUL_BOA.xml as Statistical file.
  5. Save the Output image as su_svm.tif.
  6. Evaluate classification results.
    1. Add the classification result su_svm.tif to QGIS.
    2. Right click su_svm.tif in the TOC and select Properties --> Style --> Style --> Load Style.
    3. Load lab05_MinDist.qml.

Compute a confusion matrix with independent reference data

  1. Open Orfeo Toolbox --> ComputeConfusionMatrix (Vector).
  2. Set su_svm.tif as Input image.
  3. Set lab05_validation.shp as Input reference vector data.
  4. Set Field name to C_ID.
Personal tools
Namespaces

Variants
Actions
Navigation
Development
Toolbox
Print/export