## The Curse of Rare Events - Why results based payments might fail for REDD<sup>+</sup> -

P. Magdon, H. Fuchs, L. Fehrmann, C. Pérez, and C. Kleinn

ForestEye Research GmbH, Göttingen, Germany



WCF-Workshop, September 7.-12., 2015, Pietermaritzburg, SA



### "Results based payments under REDD<sup>+</sup>"

 REDD<sup>+</sup> aims at reducing greenhouse gas emissions by forest conservation and improved management





### "Results based payments under REDD<sup>+</sup>"

- REDD<sup>+</sup> aims at reducing greenhouse gas emissions by forest conservation and improved management
- REDD<sup>+</sup> should providing incentives via carbon finance





### "Results based payments under REDD<sup>+</sup>"

- REDD<sup>+</sup> aims at reducing greenhouse gas emissions by forest conservation and improved management
- REDD<sup>+</sup> should providing incentives via carbon finance
- REDD<sup>+</sup> works with results based payments





### "Results based payments under REDD+"

- REDD<sup>+</sup> aims at reducing greenhouse gas emissions by forest conservation and improved management
- REDD<sup>+</sup> should providing incentives via carbon finance
- REDD<sup>+</sup> works with results based payments
- REDD<sup>+</sup> requires standardized and sound monitoring, verification and reporting



# Monitoring options for REDD<sup>+</sup>



Monitoring options:

- Stock Change Method: Activity data × Emission factors = GHG-Emissions
- Loss-Gain Method: Processed based, estimates net balance of carbon fluxes

WCF-Workshop, September 7.-12., 2015, Pietermaritzburg, SA

## Monitoring options for REDD<sup>+</sup>



Monitoring options:

Stock Change Method: Activity data × Emission factors = GHG-Emissions

## Project Area



Determine if there is a difference between the forest cover change rates in the Amazon Region ,A8 Colombia for the periods:

Baseline: 2000-2012 (*C*<sub>1</sub>)

■ Reporting Period: 2012-2013 (*C*<sub>2</sub>)

$$\Delta C = C_1 - C_2 \tag{1}$$

#### Challenges

- Very large and remote area
- No forest inventory data available
- Persistent cloud cover
- Limited time

Approach:

- Stratified, sample based approach
- Landsat images
- Visual interpretation

# Sampling Design



### Sampling Design

- Systematic sampling grid  $2 \times 2$ km (n = 328633)
- Stratification by Global Forest Change Map (Hansen et al., 2013)

WCF-Workshop, September 7.-12., 2015, Pietermaritzburg, SA

7 / 17

# Sampling Design



### Stratification

Random selection of n = 300 points in each of the L = 4 Strata

WCF-Workshop, September 7.-12., 2015, Pietermaritzburg, SA

### **Observational Design**



Image interpretation using Earth Collect software





WCF-Workshop, September 7.-12., 2015, Pietermaritzburg, SA

In each stratum h and for each point i in time t the mean forest cover  $\hat{p}$  was estimated as:

$$\hat{p} = \frac{n_f}{n} \tag{2}$$

where  $n = \text{total number of points and } n_f = \text{number of points classified as forest.}$ 

The corresponding variance  $v\hat{a}r(\hat{p})$  is calculated following Cochran (1977) as:

$$v\hat{a}r(\hat{p}) = \frac{\hat{p}*(1-\hat{p})}{n-1}$$
(3)

Table : Strata sizes and strata weights that were derived from the GFC map using the base grid. Number of samples per stratum that were used for the image interpretation.

| Stratum N         |        | Weight | Number of Samples |  |
|-------------------|--------|--------|-------------------|--|
| Stable-Forest     | 302310 | 0.920  | 300               |  |
| Stable Non-Forest | 19434  | 0.059  | 300               |  |
| Deforestation     | 5605   | 0.017  | 300               |  |
| Reforestation     | 948    | 0.003  | 300               |  |
| Defor. and Refor. | 336    | 0.001  | 300               |  |
| Total             | 328633 | 1      | 1500              |  |

Table : Sample based estimates of the annual net forest cover change in the baseline and reporting period.

| Period    | Annual Deforestation | Annual Deforestation |
|-----------|----------------------|----------------------|
|           | Rate                 | Area                 |
| 2000-2012 | 0.288%               | 121,094.8 ha         |
| 2012-2013 | 0.302%               | 122,348.7 ha         |

Table : Sample based estimates of the annual net forest cover change in the baseline and reporting period with 95% Confidence Interval (CI).

| Period    | Annual Defor- | Annual Deforestation | Confidence In-     |
|-----------|---------------|----------------------|--------------------|
|           | estation Rate | Area                 | tervall            |
| 2000-2012 | 0.288%        | 121,094.8 ha         | $\pm$ 23,276.66 ha |
| 2012-2013 | 0.302%        | 122,348.7 ha         | $\pm$ 40,403.47 ha |

#### Major Observations

- Deforestation is a rare event in the Region A8 of Colombia
- Slight increase in the mean deforestation rate
- Confidence intervals overlap largely

$$v\hat{a}r(\hat{p}) = rac{\hat{p}*(1-\hat{p})}{n-1}$$
 (4)

Variance depends on n and  $\hat{p}!$ 

$$v\hat{a}r(\hat{p}) = \frac{\hat{p}*(1-\hat{p})}{n-1} \quad (4)$$

n

### Excursus: Sampling proportions



"Simple random sampling, or any method of sampling that is adapted for general purposes, is an expensive method of sampling the total number of units of a scare type" (Cochran, 1977)

### Discussion

#### UN-REDD partner countries in Africa



Annual forest cover change 2005-2010 in %

Figure : Source: FRA 2010, FAO

Often deforestation can be regarded a rare event:

- Detecting rare events with acceptable precision is challenging in sample based studies
- Including large parts of untouched forest is not helpful
- Monitoring should focus on areas were actions will take place

#### Further research needs

- Selection of the reference area
- Improved stratification and sample allocation
- Model-Assisted approaches

### Thank you for your attention!

We thank the students from in Göttingen



Cochran, W. G. (1977). Sampling Techniques.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. a., Tyukavina, a., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, a., Egorov, a., Chini, L., Justice, C. O., and Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. *Science (New York, N.Y.)*, 342(6160):850–3.