# Effect of logging and optimum sampling design in the tropical forests of **Papua New Guinea**

Riccardo Testolin Santiago de Chile 14 November 2016 PNG Forests

33Mha 70% country 6% world biodiversity

**11.000** plant species

**15%** deforested (1972-2002) **8.8%** degraded (1972-2002) **392-1247** km<sup>2</sup>y<sup>-1</sup>

# REDD+

Conservation and Sustainable Management

COP16 (2010) Cancun safeguards

 Rights of indigenous people
Conservation of biological diversity

3) Prevention of leakage

### UN-REDD PROGRAMME PILOT COUNTRY SINCE 2008

### Permanent Sample **Plot network 135** PSPs **2** forest types (**P** and **H**) 1 ha 25 subplots 15 years 449 censuses 160.455 trees (> 10 cm DBH) 592 taxa





# Methods

Effect of selective logging on tree biodiversity and structure

### **3 diversity** indexes

Richness, Shannon's diversity, Pielou's evennes

### 2 structural indexes

Stem density, Basal area

#### **Species composition**

logged/unlogged Multivariate analysis (PERMANOVA, CAP)

#### **Diversity and structure**

logged/unlogged, time Univariate analyses (ANOVA, Ims)

#### Different **species** in **unlogged H type** PSPs

No differences in **diversity** 

Greater stem density in unlogged PSPs p < 0.01 (421 ± 153 stems ha-1 / 308 ± 110 stems ha-1)

Greater **basal area** in **unlogged H type** PSPs **p<0.01** (30.28 ± 4.45 m2 ha-1 / 15.52 ± 4.04 m2 ha-1 )



### Both forest types **Richness p<0.01**

0.55 ± 0.19 taxa ha-1 yr-1

**Diversity** p<0.01 0.01 ± 0.05 units ha-1 yr-1

#### H type forests **Stem density** p<0.001 9 ± 1 stems ha-1 yr-1

**Basal Area p<0.001** 0.42 ± 0.06 m2 ha-1 yr-1



# Methods

Optimum plot and sample sizes for carbon stock and biodiversity estimation

#### Richness Carbon fraction

C= ½ AGLBi = ½ 0.0776[piDi^2Hi]^0.94 **Simulated sampling** 20mx20m subplots, 1000 rand **Coefficient of variation** CV = (s/m) × 100%

#### **Non-linear models**

carbon/richness, logged/unlogged y = a + b × X^-c

#### **Optimum plot size**

carbon/richness, logged/unlogged yl = -1

#### **Optimum sample size**

carbon/richness, logged/unlogged N =  $(CV \times t(a, n-1)/e)^2$ 



# CV **decreased** with **increasing** plot size

Initial **steep** decline and slower reduction between **0.2** and **0.3** ha

Higher CV in **logged** PSPs

Higher CV for **Carbon** 



#### Optimum plot size 0.08 – 0.32 ha

#### Optimum sample size 75 – 164 PSPs

# 319 PSPs 0.2-0.3 ha

efficient sampling scheme for carbon stock and richness

### Conclusions

1.

# Logging affected PNG forests' composition and structure

#### vidence of recovery

3. Improved sampling design for richness and carbon stock

Thank you!