

Soil carbon stock under different landuse systems in Attapady Valley of Nilgiri Biosphere Reserve, Western Ghats, India

Sowmya Chandramouli¹, Sameer, P.A², Syam Viswanath¹, Nair, K.M³

¹ Tree Improvement and Genetics Division, Institute of Wood Science & Technology, ICFRE, Bangalore, India ²Dabur Nepal Private Ltd., Kathmandu, Nepal ³National Bureau of Soil Survey & Land Use Planning, ICAR, Bangalore E-mail: <u>sowmya.chandramouli@gmail.com</u>, <u>sameeradam@rediffmail.com</u>,

syam.viswanath@gmail.com, nairkmn@yahoo.com

Background

- Attappady valley of Nilgiri biosphere Reserve
 well known for its abundant natural wealth and indigenous people
- History of land-ownership and uses in the area - evolution of land-use problems

Location

- ✓Area: 745 km²
- ✓ Latitude: 10° 55' and 11° 14' N
- ✓ Longitude: 76⁰ 21' and 76⁰ 48'
- ✓ Altitude: 450 to 2300 M above MSL

Land use History of Attapady valley

Era	Ownership	Land use Pattern
Up to 18 th Century	Chera, Chola, Pandya, Vijayanagara, Mysore (Kongu) and Samothiri (Malabar) kingdoms	Denseforests,Shiftingcultivation,huntingandgathering
18 th –20 th Century	East India Company-Kingdoms and Land Lords (Janmis)	Denseforests,Shiftingcultivation,huntingandTimberextraction
1950-1970 (After Tamil Nadu Preservation of Private Forests Act, 1949)	Tribes, State Departments of Forest and Revenue	Extraction of timber and NTFP. Shifting / Kumri cultivation
1970-Onwards (After Kerala Private Forests Vesting and Assignment Act, 1971)	Adivasis, State Departments of Forest and Revenue, commercial establishments, institutions	Degraded forests, Settled Dry farming, plantations, fallows (wastelands), brick-kilns, buildings

Land-use systems (LUS) in Attapady

- Attapady covered by pristine natural forest until 19th century
- Anthropogenic interventions deforestation and vegetational changes in LUS – 1950-60
- Three newly transformed LUS
 - Agroforestry
 - Annual crop agriculture
 - Barren land

Study procedure

- Spatial delineation of the study area
- Climatic analysis
- Selection of sites
- Study of land and soil at selected sites
- Soil Sampling
- Laboratory analysis of soils
- Data processing and interpretations

Satellite image of the study area (LISS-2)

Geo-referencing of satellite image of the study area

97公元(1)

077 (GOD)

077 00:00

010:49:00

010.30,00

(n(c) 5/0)

	N O	Land Use	Area Sq.km	% area
		Forest		
	1	Degraded forest	355.30	47.7
	2	deciduous forest	27.38	3.6
	3	evergreen forest	80.75	10.8
		Agricultural land		
	4	Single crop(Kharif)	41.43	5.5
	5	Double crop (Kharif and Rabi)	66.00	8.8
		Agroforestry	92.69	12.4
		Barren Land		
	6	Permanent fallow	50.56	6.8
	7	Barren rocks	27.38	3.7
	8	Water bodies	2.81	0.3
Contraction of the second of t	GEND JLTURI N ROC N SCC F D EC FD EVER E CRO E CRO E CRO C CRO SSIFIE BOD Y	E PLANTATION KY UB OREST OUSFOREST GREEN FOREST P DUSFOREST EEN FOREST FALLOW		

Physiography of the study area (not to scale).

Drainage network of the study area (not to scale)

Soil Series map of the study area (NBSS& LUP) (not to scale)

×

Site selection

- Study area was delineated in to 3 agroecological zones and 4 prevalent landuse systems (LUS)
- Study sites identified in each category keeping all other pedogenic factors (slope, geology etc) constant.
- Soil Profiles were exposed up to the parent material
- soil organic carbon (SOC) estimated.

Agroclimatic zonation

S.No.	Agroecological unit	Site
1	Per-humid A – (precipitaion 2000-2500 mm/yr)	Mukkali
2	Per-humid A – (precipitaion 2000-2500 mm/yr)	Chittoor
3	Per-humid A – (precipitaion 2000-2500 mm/yr)	Jellippara
4	Moist sub-humid zone C-2 (precipitaion 1000-1500 mm/yr)	Thavalam
5	Moist sub-humid zone C-2 (precipitaion 1000-1500 mm/yr)	Vechappathy
6	Dry sub-humid zone C-1 (precipitaion 7000- 1000 mm/yr)	Puthoor
7	Dry sub-humid zone C-1 (precipitaion 7000- 1000 mm/yr)	Anakkatty
8	Dry sub-humid zone C-1 (precipitaion 7000- 1000 mm/yr)	Cheerakadavu

Agro ecological zonation map of the study area (not to scale)

Land-use systems (LUS) identified for study in Attapady

- Pristine Natural forests dense evergreen and deciduous forests
- Agroforestry Cocos nucifera and Areca catechu based homestead gardens with diverse agricultural horticultural and forest species
- Agriculture vegetable crops cereals, millets, Saccharum spp. and medicinal plants like Coleus aromaticus
- Barren lands degraded forest land devoid of trees and the deforested lands left fallow under private ownership

Different land uses sytems (LUS) in Attappady valley

Forest

Agroforestry

Wastelands

24/10/2003 Agriculture forest

Different land uses sytems (LUS) in Attappady valley

Agroforestry

Wastelands

Agriculture

01/01/2002

Different land uses sytems (LUS) in Attappady valley

Forest

Agroforestry

Agriculture

1/01/2

SOC status

- Comparisons of the present SOC status across these four LUS
- Vegetation and debris were cleared in one m² area in the identified sites
- SOC analyzed by Walkley-Black procedure

A soil profile in forest LUS

A soil profile in agroforestry LUS

A typical agriculture LUS with exposed soil profile

Soil bulk density in sites selected in each LUS and agroclimatic zone

Sites		Forest LU	S	Agı	Agroforestry LUS			Agriculture LUS			Barren Land LUS		
selected in													
each LUS and	0-30	30-100	0-100	0-30	30-100	0-100	0-30	30-100	0-100	0-30	30-100	0-100	
agroclimatic	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	
zone													
					Perhu	umid							
Mukkali	1.48	1.54	1.51	1.52	1.56	1.53	1.54	1.55	1.56	1.57	1.59	1.58	
Chittoor	1.45	1.53	1.5	1.49	1.57	1.48	1.5	1.58	1.54	1.51	1.65	1.58	
Jellippara	1.41	1.49	1.45	1.42	1.51	1.47	1.53	1.58	1.56	1.56	1.64	1.6	
Mean	1.44	1.52	1.48	1.47	1.54	1.49	1.52	1.57	1.55	1.54	1.62	1.58	
				Μ	loist de	ciduous							
Thavalam	1.49	1.56	1.53	1.52	1.54	1.53	1.56	1.59	1.7	1.56	1.62	1.59	
Vechappathy	1.49	1.54	1.52	1.5	1.57	1.54	1.51	1.6	1.56	1.56	1.62		
Mean	1.49	1.55	1.52	1.51	1.55	1.53	1.53	1.59	1.63	1.56	1.62	1.59	
					Dry dec	iduous							
Puthoor	1.47	1.6	1.54	1.49	1.62	1.56	1.55	1.65	1.6	1.58	1.68	1.63	
Anakkatty	1.4	1.5	1.45	1.49	1.58	1.54	1.54	1.64	1.59	1.62	1.68	1.65	
Cheerakadavu	1.48	1.52	1.5	1.5	1.57	1.54	1.54	1.6	1.57	1.58	1.62	1.6	
Mean	1.45	1.54	1.49	1.49	1.59	1.54	1.54	1.63	1.58	1.59	1.66	1.62	
Over all mean	1.46	1.53	1.49	1.49	1.56	1.52	1.53	1.59	1.58	1.56	1.63	1.59	

Measurement of C efflux from soil in the study sites

• Ce = (A x D x ρ b x SOC x f)

- Ce is the C efflux from soil to atmosphere,
- A is the area of land conversion,
- D is the soil depth in m,
- ρb is the soil bulk density as the weighted average for all depths.
- f is the SOC fraction efflux by the change in land use.

Houghton (1995)

Measurement of SOC depletion

- Ci = $\sum_{n=0}$ (SOCt SOCf) ρ b.d
- Ci is the carbon lost during degradation from the soil,
- SOCt is the SOC before degradation and SOCf is the SOC after the degradation
- ρb is the soil bulk density of the horizon of thickness 'd' and
- 'n' refers the number of diagnostic horizons.

Soil Organic Carbon Stock (SOC) and Total Carbon stock of different land use systems in Attapady Valley, Kerala

		Mean SOC in kg m ⁻²			Carbon stock in Mg ha ⁻¹				
Land use	Area (Sq km)	0-30 cm	30-100 cm	0-100 cm	0-30 cm	30-100 cm	0-100 cm		
Dense evergreen forest	80.74	9.56	7.49	17.05	772	605	1377		
Dense deciduous forest	27.38	7.68	5.43	13.11	210	149	359		
Agroforestry	92.68	7.14	3.02	10.17	662	280	942		
Agriculture	107.43	4.79	2.07	6.86	514	223	737		
Wastelands	405.85	3.60	0.87	4.47	1461	354	1814		
Total					3619	1611	5229		

SOC stock at top 100cm in Attapady Valley

- Undisturbed forest (15.14% of area) accounted for 33.20% of SOC stock
- Agroforestry (12.98 % of area) held 18.02% of SOC stock
- Agriculture landscapes (15.04 % of area) held 14.09 % of SOC stock
- Barren lands (56.3% of the study area) accounted for 34.6% of the total SOC stock

Soil Organic Carbon Stock (SOC) depletion in study sites in different LUS in 3 Agroecological zones in Attapady Valley, Kerala

Site SOC Stock decline Agroforestry Kg m-1			SO Ag	C Stock de riculture Kg	ecline j m-1	SOC Stock decline Wasteland Kg m-1			
	0-30 cm	30-100 cm	0-100 cm	0-30 cm	30-100 cm	0-100 cm	0-30 cm	30-100 cm	0-100 cm
				Perhum	nid				
Mukkali	0.31	3.02	3.33	3.95	5.19	9.14	4.17	5.36	9.53
Chittoor	3.51	5.13	8.64	5.96	5.53	11.50	8.78	7.52	16.29
Jellippara	0.29	0.43	0.72	2.02	2.18	4.20	4.61	6.94	11.55
Mean	1.37	2.86	4.23	3.98	4.30	8.28	5.85	6.61	12.46
			Мс	oist decid	duous				
Thavalam	0.09	4.81	4.04	1.95	5.54	7.49	4.41	6.19	10.60
Vechappathy	2.11	1.71	3.82	3.75	4.01	7.76	3.68	4.01	7.68
Mean	0.67	3.26	3.93	2.85	3.99	7.63	4.04	4.64	9.14
			D	ry decid	uous				
Puthoor	2.94	3.63	6.57	4.89	3.74	8.62	5.38	4.42	9.80
Anakkatty	0.58	4.18	4.76	3.04	4.72	7.69	3.80	4.93	8.73
Cheerakadavu	0.83	1.71	2.54	3.24	4.54	7.78	3.48	4.11	7.59
Mean	1.45	3.17	4.62	3.72	3.84	8.03	4.22	4.49	8.71
Over all mean	1.16	3.10	4.26	3.52	4.04	7.98	4.71	5.25	10.10

SOC stock depletion

- Major depletion of SOC top 30cm soil
- Estimated depletion around 1.16 kg m⁻² on conversion to agroforestry
- 3.52 kg m⁻² on conversion to agriculture
- 4.71 kg m⁻² on conversion barren lands
- barren land > agriculture land > agroforestry> forestland

Magnitude of SOC decline at top 100 cm of soil due to shifting from forest to different LUS in different agroecological zones in Attapady Valley

CO ₂ released (kg m ⁻¹) during LUS shift in the 3 different agroecological zones in Attapady Valley									
Site	Agroforestry	Agriculture	Wasteland						
Perhumid									
Mukkali	12.21	33.51	34.96						
Chittoor	31.68	42.15	59.74						
Jellippara	2.62	15.40	42.35						
Mean	15.51	30.35	45.68						
Moist deciduous									
Thavalam	14.80	27.48	38.88						
Vechappathy	14.00	28.45	28.17						
Mean	14.40	27.97	33.53						
	Dry decid	duous							
Puthoor	24.08	31.62	35.93						
Anakkatty	17.44	28.21	32.02						
Cheerakadavu	9.32	28.53	27.83						
Mean	16.95	29.45	31.93						
Over all mean	15.62	29.26	37.05						

CO₂ emission from different LUS

- Maximum loss (59.74 kg m⁻¹) occurred in conversion of evergreen forest LUS to barren land LUS at Chitoor in Perhumid zone
- Minimum loss (2.62 kg m⁻¹) on conversion of forest LUS to agroforestry LUS at Jellipara in Perhumid zone

CO₂ stored under different LUS in Attapady Valley

Land use system (LUS)	Area (Sq km)	CO₂ trapped (Mg m⁻¹)
Dense evergreen forest	80.75	5048
Dense deciduous forest	27.38	1317
Agroforestry	92.69	3455
Agriculture	107.43	2702
Wastelands	405.85	6652
Total		19174

SUMMARY

Forest LUS had a carbon reserve 3.2 times greater than barren land LUS.

Nearly 19 Tg of C is estimated to be fixed as SOC through current prevalent LUS

If the natural forest had been retained, 45 Tg C could have been potentially fixed, which may be significant contribution to SOC stock in Attapady valley

Deforestation has caused a depletion of 25 Tg from this potential SOC stock.

Conclusions

- Deleterious effects of converting climax natural forest area to agroforestry LUS or agriculture LUS may not be as serious as natural forest LUS conversion to barren lands
- Need for systematic planning for converting barren lands in a sequential stepwise process towards natural forest land LUS
- Participatory approach considering issues like land tenure, land policy issues and stake holder preferences
- This study can be a benchmark for the evaluation and monitoring of further restoration activities

Acknowledgement

- Dr.V.P.Tewari, Scientist, Wood energy Division, IWST, Bangalore
- Dr.Christoph Kleinn, Professor of Forest Inventory and Remote Sensing, Burckhardt-Institute at the Faculty of Forest Sciences and Forest Ecology, Georg-August-Universität Göttingen

Thank you for your kind

attention...